Nodal solutions for critical Robin double phase problems with variable exponent

نویسندگان

چکیده

In this paper, we study a nonlinear double phase problem with variable exponent and critical growth on the boundary. The has in reaction combined effects of Carathéodory perturbation defined only locally term. presence term does not permit to apply results point theory corresponding energy functional. Thus, use appropriate cut-off functions truncation techniques work an auxiliary coercive problem. way, can variational tools get sequence sign changing solutions our main Further, show that such converges $ 0 L^{\infty} Musielak-Orlicz Sobolev space.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive and Nodal Solutions for Parametric Nonlinear Robin Problems with Indefinite Potential

We consider a parametric nonlinear Robin problem driven by the p−Laplacian plus an indefinite potential and a Carathéodory reaction which is (p−1)− superlinear without satisfying the Ambrosetti Rabinowitz condition. We prove a bifurcation-type result describing the dependence of the set of positive solutions on the parameter. We also prove the existence of nodal solutions. Our proofs use tools ...

متن کامل

p-Laplacian problems with critical Sobolev exponent

We use variational methods to study the asymptotic behavior of solutions of p-Laplacian problems with nearly subcritical nonlinearity in general, possibly non-smooth, bounded domains.

متن کامل

Existence of solutions for elliptic systems with critical Sobolev exponent ∗

We establish conditions for existence and for nonexistence of nontrivial solutions to an elliptic system of partial differential equations. This system is of gradient type and has a nonlinearity with critical growth.

متن کامل

Minimizers and symmetric minimizers for problems with critical Sobolev exponent

In this paper we will be concerned with the existence and non-existence of constrained minimizers in Sobolev spaces D(R ), where the constraint involves the critical Sobolev exponent. Minimizing sequences are not, in general, relatively compact for the embedding D(R) →֒ L ∗ (R , Q) when Q is a non-negative, continuous, bounded function. However if Q has certain symmetry properties then all minim...

متن کامل

Optimality conditions for approximate solutions of vector optimization problems with variable ordering structures

‎We consider nonconvex vector optimization problems with variable ordering structures in Banach spaces‎. ‎Under certain boundedness and continuity properties we present necessary conditions for approximate solutions of these problems‎. ‎Using a generic approach to subdifferentials we derive necessary conditions for approximate minimizers and approximately minimal solutions of vector optimizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S

سال: 2023

ISSN: ['1937-1632', '1937-1179']

DOI: https://doi.org/10.3934/dcdss.2023095