Nodal solutions for critical Robin double phase problems with variable exponent
نویسندگان
چکیده
In this paper, we study a nonlinear double phase problem with variable exponent and critical growth on the boundary. The has in reaction combined effects of Carathéodory perturbation defined only locally term. presence term does not permit to apply results point theory corresponding energy functional. Thus, use appropriate cut-off functions truncation techniques work an auxiliary coercive problem. way, can variational tools get sequence sign changing solutions our main Further, show that such converges $ 0 L^{\infty} Musielak-Orlicz Sobolev space.
منابع مشابه
Positive and Nodal Solutions for Parametric Nonlinear Robin Problems with Indefinite Potential
We consider a parametric nonlinear Robin problem driven by the p−Laplacian plus an indefinite potential and a Carathéodory reaction which is (p−1)− superlinear without satisfying the Ambrosetti Rabinowitz condition. We prove a bifurcation-type result describing the dependence of the set of positive solutions on the parameter. We also prove the existence of nodal solutions. Our proofs use tools ...
متن کاملp-Laplacian problems with critical Sobolev exponent
We use variational methods to study the asymptotic behavior of solutions of p-Laplacian problems with nearly subcritical nonlinearity in general, possibly non-smooth, bounded domains.
متن کاملExistence of solutions for elliptic systems with critical Sobolev exponent ∗
We establish conditions for existence and for nonexistence of nontrivial solutions to an elliptic system of partial differential equations. This system is of gradient type and has a nonlinearity with critical growth.
متن کاملMinimizers and symmetric minimizers for problems with critical Sobolev exponent
In this paper we will be concerned with the existence and non-existence of constrained minimizers in Sobolev spaces D(R ), where the constraint involves the critical Sobolev exponent. Minimizing sequences are not, in general, relatively compact for the embedding D(R) →֒ L ∗ (R , Q) when Q is a non-negative, continuous, bounded function. However if Q has certain symmetry properties then all minim...
متن کاملOptimality conditions for approximate solutions of vector optimization problems with variable ordering structures
We consider nonconvex vector optimization problems with variable ordering structures in Banach spaces. Under certain boundedness and continuity properties we present necessary conditions for approximate solutions of these problems. Using a generic approach to subdifferentials we derive necessary conditions for approximate minimizers and approximately minimal solutions of vector optimizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S
سال: 2023
ISSN: ['1937-1632', '1937-1179']
DOI: https://doi.org/10.3934/dcdss.2023095